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Abstract 
 
This study extends our understanding of the relationship between the use of Standards 
based middle grades curricula and the learning of traditional mathematics topics as 
measured by two widely used standardized tests, the SAT-9 and the New Standards 
Mathematics Reference Exam.  Sixteen hundred middle grades students in 43 classrooms 
from five districts with varying demographic profiles participated.  These districts had 
participated in a Local Systemic Change (LSC) project supported by NSF.  Students had 
used either the Connected Mathematics Project (CMP) or the MATH Thematics (STEM) 
program for three years. 
 
Achievement related information was accumulated and used to detect patterns and to 
estimate their magnitude on the Open Ended, Problem Solving and Procedures subtests of 
the SAT-9.  Hierarchical Linear Modeling (HLM) was used to analyze subtest results 
following methods described by Raudenbush and Bryk (2002).   HLM permitted us to 
model variation in mathematics proficiency by controlling for other factors such as 
student prior achievement and classroom ethnic composition.  It also allowed us to 
examine student and classroom patterns of achievement simultaneously.  Student and 
classroom level predictive models were developed and fitted to predict student scores for 
various subgroups and to compare the predicted values against national Normal Curve 
Equivalence (NCE) means.  A group of “value added” students were tested on three 
separate occasions over a two-year period of time to permit examination of achievement 
trends and achievement gaps among the various subpopulations. 
 
In the within classrooms HLM analysis, students’ socio-economic status (SES) and prior 
mathematics knowledge were significant predictors of achievement.  A number of 
different factors such as SES, prior knowledge, concentrations of Asian students, percent 
special education and school district were significant predictors of between classroom 
variation. 
 
Students’ performance on the Open Ended and Problem Solving subtests were above 
national means, despite the fact that many began below this level.  Their progress on the 
Procedures subtest was less stellar with districts ending below national means. This is 
perhaps not surprising since these curricula do not focus on paper and pencil calculation 
to the same extent as more traditional curricula.  
 
Results suggest that Standards based students do learn traditional mathematics topics, at 
least those topics assessed by the two tests used.  This study continues to raise the 
question “What mathematics is most valued and what type of a curriculum is most likely 
to provide it? 
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Introduction 

This study examined achievement patterns of middle school students enrolled in 

Standards-based curricula.  The focus was on traditional topics in mathematics as 

measured by two nationally normed achievement tests.  By Standards-based curricula we 

are referring to those curricula which were funded from a solicitation of proposals 

through the National Science Foundation (NSF) in the early 1990’s (Senk & Thompson, 

2003).   

 

This study builds on and extends our existing understanding of student achievement in 

Standards-based programs in four significant ways.  First, we examine the impact of 

published editions of these curricula on student understanding as contrasted to earlier 

studies using field-test versions.  Second, this research concerns the use of Standards-

based curricula as part of district-wide curricula adoptions.  By examining adopted 

versions of these curricula we study the achievement of students whose teachers are 

required to, and have not necessarily volunteered to teach Standards-based curricula.  

This provides a more accurate overall picture of expected student achievement since 

many earlier field-test teachers were volunteers and therefore may not be typical of all 

teachers that will eventually be expected to implement a Standards-based curriculum. 

Third, we employ hierarchical linear modeling (HLM) to account for the wide variability 

between classrooms and the inter-dependency of students within the same classroom 

(Kilpatrick, 2003).   Thus, HLM allows us to consider student and classroom results 

simultaneously.  And lastly, we examine achievement gaps over a two year period for 
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students whose prior mathematics achievement was categorized as high or low, and for 

high and low levels of socio-economic status (SES) as determined by eligibility for free 

or reduced lunch. 

 

The present study adds yet another brushstroke to the emerging picture of mathematics 

achievement in classrooms using curricula directly and fundamentally influenced by the 

Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989) and 

similar documents (National Research Council, 1989). Schoenfeld (2002) reviews this 

emerging body of work and concludes that there is growing support for the success of 

such programs in terms of problem solving or other in-depth measures. This 

characterization is largely consistent with research on Everyday Mathematics (Briars & 

Resnick, 2000; Carroll, 1997; Riordan and Noyce 2001), Connected Mathematics 

(Riordan & Noyce, 2001;  Ridgway, Zawojewski, Hoover, & Lambdin, 2003; Reys, 

Reys, Lapan, Holliday, & Wasman, 2003), MATH Thematics (Billstein, 1998; Reys, 

Reys, Lapan, Holliday, & Wasman, 2003),  Contemporary Mathematics in Context 

(CMIC) (Schoen & Hirsch, 2003), Interactive Mathematics Project  (Webb, 2003), 

University of Chicago School Mathematics Project (Thompson & Senk, 2001, who note 

it is Standards-based and NSF-funded), and Mathematics: Modeling Our World (Abeille 

& Hurley, 2001).   Kilpatrick (2003), when referring to the 13 chapters in the Senk and 

Thompson book, concludes that “[the] studies reported in this volume offer the best 

evidence we have that Standards-based reform works” (pg. 487). 
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The research of student achievement in Standards-based curricula with regard to facility 

with both arithmetic and symbolic manipulation procedures is mixed over the short and 

long terms.  For instance, Ridgway, Zawojewski, Hoover, & Lambdin (2003) found that 

6th grade CMP students started one year behind non-CMP students on the Iowa Test of 

Basic Skills in the fall and at the end of grade 6 were 1.5 years behind the other group.  

The CMP Students who started .52 SD behind non-CMP students were .61 SD behind 

after one year.  At the end of 8th grade, however (3 years), CMP students were .32 SD 

ahead (p. 207).  In related investigations, the authors conclude that there is no immediate 

short term advantage but that the longer view is promising with CMP students making 

large gains on a broad range of curriculum topics and processes when compared to non-

CMP students (pg. 215).  Mokros (2003) reported that there were no differences between 

students studying from Investigations in Number, Data, and Space (TERC, 1998) and 

students studying from traditional curricula on mastery of basic facts.  At the high school 

level, students studying from CMIC (Core-Plus) did less well on symbolic manipulation 

in abstract contexts without graphing calculators than traditional students (Huntley, 

Rasmussen, Villarubi, Sangtong, & Fey, 2000).  Schoen & Hirsch (2003) found that 

students who studied Algebra I or Accelerated Geometry outperformed students studying 

from the first year of the CMIC curriculum on algebraic procedures.  However, students 

who were in their second year of CMIC performed at statistically the same level as 

students enrolled in algebra or geometry.  Only students in Accelerated Algebra 2, the 

third year of a traditional curriculum, outperformed CMIC Course 2 students on algebraic 

procedures.   
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There is research that the benefits from a Standards-based curriculum extend beyond 

increases in mathematics achievement on open ended problem solving.   Billstein & 

Williamson (2003) found that students who used STEM improved in their attitudes 

towards mathematics at the middle school level.  Cichon & Ellis (2003) support this 

finding among students at the secondary level.  Billstein & Williamson (2003) found that 

students who used STEM at the middle-school level also had higher scores on the 

language achievement subtest of the Iowa Test of Basic Skills than a comparable group 

of students studying from other mathematics curricula.  

 

Research suggests that curriculum is only one of the factors that influences student 

achievement. “Whereas improved curriculum materials can provide rich activities that 

support students’ mathematical investigations, in and of themselves such materials may 

not be sufficient enablers of instruction that affords pursuit of conceptual issues.” 

(Gearhart, Saxe, Seltzer, Schlackman, Ching, Nasir, et al., 1999, p. 309; c.f. Ball & 

Cohen, 1996).   Schoen, Cebulla, Finn, & Fi (2003) found that fidelity of implementation 

of CMIC by teachers was “positively related to growth in student achievement” (p. 228).  

 

Briars & Resnick (2000) looked at fidelity of implementation in the Everyday 

Mathematics program in the Pittsburgh schools.  They found that schools with high 

fidelity of implementation scored two to five times higher on skills, problem solving, and 

concepts on the New Standards Mathematics Reference Examination.  McCaffrey et al. 

(2001) also found that Standards-based teaching was positively related with student 

achievement, but only made a significant impact when a Standards-based curriculum was 
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also in place. Weiss, Banilower, Overstreet & Soar (2002) found that classrooms using a 

Standards-based curriculum were rated higher on a scale measuring inquiry-oriented 

teaching practices when compared to classrooms with traditional mathematics curricula.  

These findings suggest that a Standards-based curriculum alone can positively influence 

teacher pedagogy.  However, the results are especially promising if combined with high 

fidelity of implementation and effective instruction of these new materials.   

 

Another aspect of this complex interaction is the students themselves. The ways students 

react to and interface with the curriculum in the classroom can affect implementation of 

the curriculum (Cooney, 1985; Henningsen & Stein, 1997).  In addition, the 

characteristics that students bring with them to the classroom also help to shape their 

achievement.  For instance, in the SMSG study Begle (1973) stated,  

 

“Even a casual inspection of the results of this study of predictors reveals two clear 

generalizations.  The first of these is that the best predictor of mathematics achievement 

is previous mathematics achievement.  … What we do say is that these nonmathematics 

scales do not affect later mathematics achievement nearly as much as previous 

achievement in mathematics does.  The second generalization is this: The best predictors 

of computational skill at the end of the school year are generally computational skills at 

the beginning of the school year.  On the other hand, the best predictors of performance at 

the high cognitive levels of understanding, application, and analysis seldom include 

computational skills.”  (p. 213-214). 
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Student socio-economic status (SES) has also been shown to play a role in how students 

interact with Standards-based curricula (Lubienski, 2000).  Past research on student 

achievement in Standards-based classrooms has used SES either as a variable in 

matching groups for comparison purposes (Riordan & Noyce, 2001; Reys, Reys, Lapan, 

Holliday, & Wasman, 2003) or as a predictor of student achievement in regression 

analyses (Schoen, Cebulla, Finn, & Fi, 2003).     

 

School environment also affects successful implementation of any curriculum (c.f., 

Eisenhart et al., 1993; Cohen & Ball, 2001).   Schoen, Cebulla, Finn, & Fi (2003) found 

that professional development that is related to the curriculum is positively correlated 

with student achievement. 

 

Methodology 

Selection of the Districts. 

In the mid to late 1990’s the National Science Foundation, in an attempt to provide much 

needed professional development for school districts that adopted one or more of the new 

NSF funded Standards-based curricula, created the Local Systemic Change through 

Teacher Enhancement Initiatives (LSCs).  The 47 funded LSCs (NSF 95-145) were 

“designed to engage entire school districts in the reform of science, mathematics and 

technology education, … to provide 47,000 teachers with professional development and 

… reach 1.6 million students in 240 school districts nationally”   

(p. 1 http://www.nsf.gov/pubs/1997/nsf97145/intro.htm.) 
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The LSC discussed here, “Minneapolis and St Paul Merging to Achieve Standards 

Project,” (MASP)2, was one of these 47 Projects.  (MASP)2 provided professional 

development (PD) targeted to new NSF funded Standards-based curricula to over 1100 

middle grades and secondary teachers in 21 districts between 1997 and 2000.  These 

teachers then provided Standards-based mathematics instruction to over 74,000 students 

in the 2000-2001 school year, and slightly larger numbers of students in the years since.   

Of these twenty-one school districts, five were invited to participate at the middle school 

level in the study of student achievement reported here.  These five districts were chosen 

due to their geographic variety (urban and suburban), use of a variety of Standards-based 

curricula, and differing school contexts.  In some cases there were high degrees of 

implementation while in other districts the middle-school and/or secondary mathematics 

faculty actively tried to undermine efforts to use Standards-based curricula.  

 

The five districts included in our sample used either the Connected Mathematics Project 

(CMP) (Lappan, Fey, Fitzgerald, Friel, & Phillips, 1997) or MATH Thematics (MT) 

(Billstein & Williamson, 1998).  These curricula differ from each other in various ways; 

the length of the units, the reality of the contexts, and the emphasized content are a few 

examples. Because both curricula responded to the same NSF Request for Proposals, they 

share many similarities such as recurring integration of topics within grade levels and a 

decreased emphasis on procedural knowledge. Although we recognize the danger of 

combining similar curricula (Davis, 1990) our research question referred to students in 

broadly defined Standards-based mathematics classrooms, not those studying from a 

specific Standards-based curricula. 
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The location, curriculum, rationale and assessment for each of the five districts are shown 

in Table 1.  There were sharp differences among some of the districts in geographic 

location, student enrollment, and student characteristics.  One school district had 

substantially greater enrollment than the others and was the only one located in a purely 

urban setting.  Another district was located on an urban-suburban boundary, while the 

remaining districts were located in suburban settings.  The largest district also showed the 

greatest diversity in student ethnicity, eligibility for a free or reduced price lunch, 

percentage of English language learners, and special education status.  In contrast, the 

remaining four districts had only modest variation on student demographic variables and 

their students were predominately white native English speakers who were not eligible 

for free or reduced lunch. 
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Table 1: Location, Curriculum, Rationale, and Assessment for Choice of Districts 
 

District Geographic 
Location 

Middle Grades 
Curriculum 

Assessed in this 
Study 

Rationale for 
Choice of District 

Assessment 
Used 

A Urban-Suburban 
Boundary MT 

High fidelity of 
implementation 

with much parent 
support 

SAT-9 

B Urban CMP  

Large Urban 
Population – 

Variable 
Implementation 

SAT-9 

C Suburban CMP 

Wholesale 
adoption 

sabotaged by a few 
faculty dissenters 

and parents 

SAT-9 

D Suburban MT 

Wholesale 
adoption with 

district authorized 
supplements 

SAT-9 

E Suburban  CMP Enthusiastic 
Adoption 

SAT-9 & 
New 

Standards 
 



  

 13

 
Data Collection 

Two types of data were gathered.  We refer to them as “one-shot” and “value-added”.  

“One-shot” cross-sectional data consisted of two groups of 8th grade middle school 

students, one tested in the Spring of 2001, and the other in the Spring 2002.  These 

students had been studying from either CMP or MT for a total of three years.   The Spring 

2002 group also contained 8th grade “value-added” students.  There were no theoretical 

reasons to consider the cohorts of eighth grade students tested as separate.  Similarly, the 

results of analyses such as ANOVA and HLM in which cohort served as a predictor 

indicated that there were no empirical reasons to treat the groups as separate.  As a result, 

they were combined into a single group for analysis purposes. The sample for this study 

consists of approximately 1600 Standards-based students who took either the Stanford 9 

or the New Standards Test.  

 

In the “value-added” data, students who had studied from either CMP or MT as sixth-

graders and continued through 7th and 8th grades in the curriculum were tested three times: 

in the beginning of 7th grade (Fall 2000), the end of 7th grade (Spring 2001), and at the end 

of 8th grade (Spring 2002).  The purpose of this phase of the assessment was to provide a 

longitudinal description of student achievement over two successive school years.   

 

In both the value-added and one-shot data, 43 selected mathematics classes were 

identified by the districts as being typical of classes using these materials. 
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Design 

A non-experimental design with clustering was used.  Students were considered to be 

clustered (nested) within classrooms, which in turn were clustered within school districts.  

Information was obtained for each level of clustering in the sample, but the focus was on 

students and classrooms.  The lack of experimental manipulation means that study results 

support inferences about relationships among variables and their magnitude, but do not 

generally support strong causal inferences. 

 

Instruments 

This research project began with questions from districts, teachers, and parents 

concerning achievement of students enrolled in Standards-based classes in schools for 

which the (MASP)2 LSC provided professional staff development for the teachers and 

staff.  Our partner school districts wanted testing instruments with national norms. After 

reviewing several instruments from national publishers and consulting with our partner 

districts, we narrowed the list to two; the Stanford Achievement Test, Ninth Edition 

(SAT-9) developed by Harcourt Brace Educational Measurement and the New Standards 

Reference Examination in Mathematics developed by the Learning Research and 

Development Center of the University of Pittsburgh and the National Center on 

Education and the Economy.  Both sets of tests were distributed and scored by Harcourt 

Brace.   

 

The mathematics portion of the SAT-9 has three subtests.  The Problem Solving subtest 

contains 30 multiple-choice problems which require students to solve problems set within 
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real world and mathematical contexts.  The Procedures subtest has 20 multiple choice 

questions which require students to perform one of the four basic arithmetic operations 

with whole numbers, integers, and fractions.  The Open Ended subtest is designed to 

“assess the concepts and skills of mathematics within the context of realistic and 

engaging problems” (Stanford 9 Technical Data Report).  Each of the SAT-9 subtests test 

the content areas of number, measurement, geometry, algebra, functions, statistics and 

probability as deemed appropriate for each grade level.  The two multiple choice subtests 

combined and the Open Ended subtest each take two 50-minute school periods to 

administer. Calculators are allowed on all subtests except for Procedures.  Sample items 

for the SAT-9 Procedures, Problem Solving and Open Ended subtests are located in 

Appendix A.   

 

The mathematics portion of the New Standards Reference Examination consists of three 

parts.  The first consists of 20 multiple choice questions which are a subset of SAT-9 

multiple-choice test items.  In addition, this first section contains short tasks.  These 

SAT-9 questions enable this portion of the test to be compared to national norms.  The 

student has 20 minutes to complete the multiple-choice questions and 35 minutes for the 

short tasks.  Students then spend 55 minutes on the second section which is made up of 

long and medium length tasks.  The third section requires 55 minutes to complete and 

covers both short and long tasks.  Short tasks are constructed response items while the 

medium and long tasks require detailed answers and are considered extended response 

items. 
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The New Standards Reference Examinations are criterion-referenced tests.  These tests 

set levels of constructed response performance in three areas: Skills, Concepts and 

Problem Solving.  The performance levels are derived from national Standards developed 

by a conglomerate of assessment-related organizations (Wiley and Resnick, 1998).  The 

content and process areas assessed include number and operations, geometry and 

measurement, algebra and function, mathematics skills, problem solving and reasoning 

and mathematical communication.  Sample items from the New Standards Reference 

Examination can be found in Appendix B.   

 

The SAT-9 reports both scale scores and normal curve equivalents (NCEs).  By 

definition, NCEs are “Normalized standard scores with a mean of 50 and a standard 

deviation of 21.06.   The standard deviation of 21.06 was chosen so that NCEs of 1 and 

99 are equivalent to percentiles of 1 and 99.  There are approximately 11 NCEs to each 

stanine.” (http://www.hemweb.com/library/glossary.htm#n).  It is important to emphasize 

that NCEs are monotonically related to, but are not identical to, percentiles.  Most of the 

data analysis results are reported in NCEs because of their familiarity and interpretability. 

 

The New Standards Mathematics test reports student scores in a number of different 

ways, but we chose to examine student performance levels in the areas of skills, concepts, 

and problem solving.  There are five student performance levels: achieved with honors, 

achieved the standard, nearly achieved, below standard and little achievement.   
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Student and Classroom Samples 

Students in 43 Standards-based classrooms were tested.  The teachers in these classrooms 

had participated in professional development provided through the (MASP)2 LSC to 

varying degrees.  Three types of professional development were provided.  First, teachers 

participated in two weeks (80 hours) of summer training related to a particular Standards-

based curriculum.  This usually entailed working through activities of the curriculum 

while teaching strategies were modeled by experienced (MASP)2 staff members.  Second, 

during the school year teachers participated in sessions (30 hours) focused on more 

general topics such as facilitating cooperative learning in mathematics classrooms, 

current research on the brain and its implications for mathematics classroom instruction, 

meetings with teachers and administrators to discuss administrative issues and with their 

counselors relating to the scheduling of students.  Lastly, (MASP)2 employed district 

personnel experienced in the curriculum to serve during the school year as mentors to 

teachers newly implementing Standards-based curricula.  The 20-hour mentoring 

component consisted primarily of classroom observations followed up with one-on-one 

debriefings and in some cases demonstration lessons.  Middle grades teachers in this 

study had completed an average of 162 professional development hours over a three-year 

period. 

 

The teachers whose students were tested were selected by administrators from each 

district.  We requested that the students included should be representative of the entire 

spectrum of students enrolled in each school.  Students who were part of the data set 

referred to earlier as “value added” came from classrooms that district personnel  
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identified as showing a high fidelity of implementation with the particular Standards-

based curriculum being used.   

 

Some schools had a difficult time getting teachers to agree to test their students on three 

different occasions and students did not always remain in the same group or the same 

school over the two-year period, and the sample showed some attrition.   A greater source 

of attrition was the failure of students to sit for all three test administrations, with some 

tested twice while others were only tested once.  The number of students tested three 

times as part of the “value added” data collection (i.e., provided three sets of scores) 

varied from a high of 92 in the district located in the urban-suburban boundary to a low 

of 20  in one of the suburban districts.  The largest attrition occurred during the third 

testing period due to heavy demands on teachers and students for state and local district 

testing.   

 

Data Analyses 

We used five methods to analyze student achievement patterns.  First, descriptive 

analyses were used to compare the achievement of Standards-based students against the 

national norms for the two instruments used.  Descriptive statistics and graphs were used 

to detect patterns and estimate their magnitude.  Second, we used hierarchical linear 

modeling (HLM) to model variation in mathematics proficiency using within-classroom 

factors such as student prior achievement.   Between-classroom predictors such as 

classroom ethnic composition, SES, as well as predictors capturing school district 

membership were used.  Where possible, the contribution of two-way interactions in 

accounting for variation in the outcomes was examined.  Third, the fitted HLM models 
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were used to predict student mathematics performance and the predicted values were 

compared to the score known to reflect average performance to provide information 

about student mathematics performance controlling for various factors related to 

achievement.  Fourth, a sub-sample of students within each district was tested three times 

to provide a value-added dimension to our analysis.  These students were tested at the 

beginning of their 7th grade year, at the end of 7th grade, and at the end of their 8th grade, 

and served as their own baseline.  We were, in this phase of the analysis, interested in 

examining achievement trends.  Fifth, we examined patterns of changes in achievement 

gaps over the three test administrations. 

 

Initial analyses focused on exploring patterns within and among districts and were 

followed by fitting regression models to try to account for variation in mathematics 

performance.   Approximately 1,600 Standards-based students were treated as clustered 

within 43 classrooms (too few districts were tested to include this level of clustering).  

All students in this group had experienced three years of a Standards-based curriculum.   

 

Since districts were concerned about how their students’ scores compared to nationally 

normed groups, we used national NCE scores and compared each district’s subtest mean 

NCE (Open Ended, Problem Solving, and Procedures) to the national mean NCE of 50.  

In the district that administered the New Standards Mathematics test we compared the 

percent of students at each of the five performance levels with the corresponding percent 

of the national sample at each performance level.     
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As other studies have noted (Riordan & Noyce, 2001; Reys, Reys, Lapan, Holliday, & 

Wasman, 2003, and Begle 1973), prior achievement in mathematics is an important 

predictor of student achievement, and, accordingly, we needed a measure of prior 

achievement for use in several statistical analyses.  As is often the case, different districts 

administered different mathematics tests to students.  At the middle school level the 

Northwest Achievement Level Test (NALT), Minnesota Comprehensive Assessment 

(MCA), Metropolitan Achievement Test (MAT7), and Terra Nova were used.  In three of 

the districts a sub-sample of students had scores on two of these mathematics tests. 

 

Because we wished to have a single (common) prior mathematics achievement score for 

each student, we began by examining the objectives, content, format, etc., of these tests 

and concluded that they assessed approximately the same construct of mathematics 

proficiency.  Next, we empirically examined the effects of combining the various 

measures of prior mathematics knowledge.  We first correlated the two sets of student’s 

prior mathematics test scores that were available in three districts.  The correlation 

between the MCA and NALT was .79 (N = 172), between MAT7 and MCA was .50 

(108), and between MCA and NALT (302) was .69.  These correlations provide support 

for the conclusion that these tests are assessing a common construct of mathematics 

proficiency.  We also fitted multiple regression models to the SAT-9 student data within 

each district using the available prior mathematics measure as a predictor, along with 

other student-level predictors like gender, attendance, SES, and native versus nonnative 

English speaker.  The results of these analyses produced similar percentages of variance 
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explained attributable to prior mathematics achievement with the effects of the other 

predictors held constant. 

 

The above logical and empirical analyses led us to treat the different prior achievement 

measures as commensurable.  We then created a combined, across-district prior 

achievement measure by treating the NCEs associated with these varied measures as 

equivalent.  For example, students with an NCE of 70 on any of these tests were assumed 

to possess approximately the same mathematics proficiency.  A plausible criticism of this 

assumption is that it suggests more precision than is justified.  That is, students with the 

same NCE score from different mathematics tests probably have similar prior knowledge, 

but perhaps less than that implied by having the same NCE score.   

 

To examine the effect of using the NCE metric of 1-99 for the combined measure versus 

another representation of this metric, some of the statistical analyses reported below were 

also performed using a polytomized form of the NCEs.  Normal Curve Equivalent scores 

were replaced by a value indicating student membership in a particular decile of NCE 

performance.  For example, the NCE performance of students in the sixth decile 

exceeded approximately 60% of the remaining students but was lower than 

approximately 30%.  The similarity of results in using the combined  prior mathematics 

scores in their original NCE metric of 1-99, versus replacing these scores with a value 

reflecting a student’s decile membership, suggests that our findings are not overly 

dependent on the metric of the combined prior mathematics achievement variable. 
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Student demographic data such as attendance, student eligibility for a free or reduced 

price lunch, English language learner status, special education status, and gender were 

also gathered from each district.  Because of missing data most statistical analyses were 

based on fewer than 1600 students, but there was no evidence that omitted students 

and/or classrooms differed systematically on our variables from those providing complete 

data, and hence no clear  evidence of bias.  Still, we acknowledge the difficulty of 

identifying the presence of such effects, and it would be prudent to interpret our findings 

in light of this. 

 

Results 

Method 1: Descriptive Summaries of District Performance 

As shown in Table 2, students across all five districts performed above the national norm 

on the Problem Solving subtest.  Only the large urban district had a mean below 50 on the 

Open Ended subtest.  On the Procedures subtest, four of the five districts scored below 

the national mean.  Recall that this subtest of the SAT-9 covers the four basic operations 

with whole numbers, integers, and fractions within purely symbolic settings and 

sometimes with one-step word problems solved without calculators. 

Table 2:  SAT-9 Open Ended, Problem Solving, and Procedures Sample Sizes, Means and 
Standard Deviations by District 
 

  Subtest  
 Open Ended  Problem Solving  Procedures 

District  N  Mean  SD  N  Mean  SD  N  Mean  SD 
A  579  58.7  18.3  584  62.9  19.3  565  37.1  16.2 
B  385  47.2  24.8  399  52.6  23.1  386  36.7  20.3 
C  113  57.3  17.7  120  60.3  15.8  120  49.9  18.0 
D  161  63.4  16.1  162  63.3  20.0  158  40.1  15.4 
E   128   76.5   16.8   123   84.9   14.8   123   59.2   17.8 
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The results for District E, the district that also administered the Mathematics portion of 

the New Standards Reference examination, are in Table 3.  Recall also that the 

mathematical skills subtest of the New Standards is a sub-sample of the SAT-9 test.   The 

results below show that 86% (57+29) of the students tested in District E achieved or 

exceeded the mathematical skills standard, while 33% (11+22) of the students at the 

national level performed at this same level.  The above average performance of District E 

students who used CMP, extends also to the Mathematical Concepts and Mathematical 

Problem Solving subtests. Within Mathematical Concepts 71% of students achieved or 

exceeded the standard as compared to 20% nationally.  On Mathematical Problem 

Solving 44% achieved or exceeded the standard while only 11% did so nationally.   

 

Although these results come from an advantaged suburban district it should be kept in 

mind that the norming group for the New Standards instrument comes from the 

Northeastern part of the United States.  This is an area of the United States that typically 

has higher scores than other geographical areas of the United States. 

(http://nces.ed.gov/nationsreportcard/mathematics/results2003/stateachieve-g8.asp) 
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Table 3:  Percentage and Number of Students Meeting New Standards Achievement 
Levels - District E 
 

    Mathematical Skills     Mathematical Concepts Mathematical Problem Solving   

Achievement 
Levels 

Percent of 
Students (N) 

National 
Norm % 

Percent of 
Students (N) 

National 
Norm % 

Percent of 
Students (N) 

National Norm 
% 

Achieved the 
Standard 

with Honors 
57% (137) 11% 29% (69) 6% 2% (5) 0% 

Achieved the 
Standard 29% (70) 22% 42% (101) 14% 42% (101) 11% 

Nearly 
Achieved the 

Standard 
9% (21) 24% 19% (45) 17% 17% (41) 14% 

Below the 
Standard 4% (10) 24% 6% (15) 26% 30% (73) 27% 

Little 
Evidence of 

Achievement 
1% (2) 19% 4% (10) 37% 8% (20) 48% 

 

 

There were sharp differences among some of the districts in student characteristics.  

Figure 1 shows that District B had just under 70% non-white students and the remaining 

districts approximately 20% or less.  Similarly, one district had approximately 21% of its 

middle school students classified as nonnative English speakers, while the remaining 

districts had values ranging from 0% - 6%.  The percentage of Special Education students 

varied from 2% - 12%, with the highest value attached to a suburban district.   

 

Socio-economic status showed comparatively more variability across all districts.  One 

district had more than 60% of its middle school students eligible for a free or reduced 
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price lunch (low SES on Figure 1), two districts had 18% - 20% eligible, another about 

15%, and in one district 3% of the middle school students were eligible.  

Figure 1: District Demographic Data 
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Average performances for the SAT-9 mathematics subtests and prior mathematics 

achievement are displayed by district in Figure 2 and show considerable variability.  The 

outcome showing the greatest variability was Problem Solving, with 27 NCE points 

separating the highest and lowest performing school districts.  The Open Ended subtest 

produced almost as much variability (25), followed by Procedures (15) and Prior 

Mathematics Achievement (18).  Collectively, this variation suggests that there are large 

differences in mathematics proficiency across the districts and somewhat smaller 

differences in prior mathematics knowledge.  However, in the analysis to follow these 

differences shrink when various demographic variables are statistically partialled out. 
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Figure 2: District Achievement Data 
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 Figure 3: Mean Classroom Scores 
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There was also evidence of substantial variability in average mathematics performance at 

the classroom level.  Figure 3 shows the classroom means for the SAT-9 subtests.  

Similar classroom performance on these subtests would produce approximately a straight 
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line, and it is apparent from Figure 3 that there is substantial variation in classroom 

performance on the SAT-9 subtests. 

 

There was also variation in average mathematics performance across SES and English 

language (native vs. nonnative speaker).  Overall, students not eligible for a free or 

reduced price lunch (high SES) scored on average 17, 17, and 7 NCE points higher than 

those eligible (low SES) on the Open Ended, Problem Solving, and Procedures subtests, 

respectively.  Similarly, native English speakers scored 26, 23, and 11 NCE points higher 

than nonnative speakers on these subtests.  Based on the descriptive statistics, English 

speaker status had a greater impact on mathematics performance than SES.   

 

The role of subgroups generated by these variables (e.g., high SES/native English 

speaker) for each ethnic group is displayed in Figures 4-7 and shows that their 

combination has differential effects on mathematics performance.  In general, native 

speakers outperform nonnative speakers in the same SES group.  With the exception of 

Asian American students in the Procedures subtest, subtest scores largely mimic prior 

achievement scores in all subgroups.  Low SES, nonnative white students performed at 

the lowest level (note small N). 
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Figure 4: Achievement for African American Students 
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Figure 5: Achievement for Asian American Students 
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Figure 6: Achievement for Hispanic Students 
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Figure 7: Achievement for White Students  
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Additional descriptive statistics for middle school students including effect sizes appear 

in Table 4.  The effect sizes help to quantify differences apparent in Figures 4-7.  

Following Hedges and Olkin (1985, p. 78), effect sizes were computed as the difference 

in two means divided by the estimated pooled standard deviation of the difference.  For 

example, low SES students scored on average .88 standard deviations lower on the Open 

Ended subtest than high SES students. 

 

Several patterns are apparent among the effect sizes.  One is the lower average 

performance for low SES, non-white, urban, nonnative English speakers, and special 

education students.  These effect sizes ranged from -.12 to -1.24 standard deviation units.  

The only demographic variables not showing a statistically significant effect were gender 

(not reported) and Asians vs. whites.  With one exception, each of the remaining 23 effect 

sizes was statistically significant.  Another pattern apparent in Table 4 is that Problem 

Solving subtest NCE means were higher than those for Open Ended subtest across all 

subgroups.   The Procedures subtest produced the lowest NCEs for all subgroups. 
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In sum, there is ample evidence of variability among the school districts in student 

demographic characteristics and in average mathematics performance.  The suburban 

districts, which included the district on the urban-suburban boundary, tended to have far 

smaller percentages of non-white, low SES, and nonnative English speakers.  The 

distribution of special education students showed little relationship with the suburban or 

urban location of districts. 

 

Method 2: HLM Analyses of Student and Classroom Data 

The SAT-9 mathematics subtests data were analyzed with HLM following the methods 

described in Raudenbush and Bryk (2002).  Treating students as clustered within 

classrooms permitted within-classroom dependency among student mathematics test 

scores to be modeled, and allowed both student- and classroom-level questions to be 

answered simultaneously.  This in turn helped to ensure more credible statistical test 

results than would ordinarily be possible with traditional regression modeling. 

 

Student-level regression models containing prior mathematics achievement, attendance, 

SES, and gender were fitted to each middle school classroom’s data.  Because of missing 

data the total number of students was reduced to approximately 1050 – 1200, depending 

on the outcome.  For each outcome (Open Ended, Problem Solving, Procedures subtest 

scores) three models were fitted.  First an unconditional model of the form 

Yij  = j0β   + rij         (1) 

j0β    = 00γ  + j0u , 
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was fitted, where Yij is the mathematics score of the ith student in the jth classroom, j0β  

is the average mathematics score (intercept) for the jth classroom, 00γ  is the average 

mathematics performance across classrooms, rij is a student-level residual, 

and j0u represents the unique effect of the jth classroom.  The unconditional model results 

tell us whether average outcomes differ across classrooms.  Next we fitted a student-level 

model of the form 

Yij  = j0β + j1β (attendance1ij - j1X )+ j2β (SES2ij - j2X )+ j3β (gender3ij - j3X )   

  + j4β (prior4ij - j4X ) + rij , (2) 

where j1β is the student level slope capturing the effect of attendance on mathematics 

(with other predictors held constant), j1X is the mean attendance in the jth classroom, and 

prior4ij  is the prior mathematics knowledge predictor. We also tested whether slopes for 

the predictors varied across classrooms.   

 

Classroom-level predictive models for intercepts (average mathematics achievement), 

and, where appropriate, slopes, were then developed.  That is, for instances when the 

effect of a student-level predictor like SES on a SAT-9 subtest varied across classrooms, 

we constructed a predictive model to try to explain variation in these slopes with 

classroom-level predictors.  Key middle school classroom predictors included Class SES 

(percentage of students eligible for a free or reduced price lunch in a classroom) and 

average prior mathematics knowledge in a classroom.  Other classroom predictors which 

we examined were the effect of different concentrations of various ethnic groups, 

nonnative English speakers, special education students, and female students in a 
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classroom.  Average classroom attendance and predictors capturing school district 

membership were also used.   Preliminary analyses showed that average classroom 

attendance and the percentage of female students in a classroom could be removed 

because they did not contribute anything to explaining variation in classroom 

mathematics means (intercepts) or slopes.  These analyses also indicated that differences 

across the five districts could be captured by a single predictor indicating whether or not 

the classroom was in the urban district.  

 

The classroom model for intercepts fitted in most analyses was  

j0β    = 00γ  + 01γ (Class SES2j - 1W ) + 02γ (Class African American2j – 2W )+ 

03γ (Class Asian3j - 3W ) + 04γ (Class Hispanic5j - 4W ) + 05γ (Class nonnative 

English speakers5j - 5W ) + 06γ (Class special educ6j - 6W ) + 07γ (district7j - 7W ) + 

08γ  (prof devel8j - 8W ) + 09γ  (prior9j - 9W ) + j0u    (3) 

where 01γ  is the classroom level slope capturing the effect of class SES (percentage of 

low SES students) on average mathematics performance, 1W  is class SES averaged across 

classrooms, Class African American is the percentage of African American students in a 

classroom, and so on.  The percentage of White students in a classroom was not used as a 

predictor because doing so would have introduced a dependency among the ethnicity 

predictors. 

 

In a few cases, student-level slopes varied randomly across classrooms, and models 

similar to those for intercepts tried to account for this variation.  The deviance test 
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described in Raudenbush and Bryk (2002, pp. 59-61) was used to test for model fit, 

allowing us to discriminate among models with more or less explanatory power.  Model-

fitting was followed by extensive model-checking to help to ensure validity of inferences.  

Cases in which normality, homoscedasticity, or linearity appeared to be suspect were 

examined in detail, and various remedies (e.g., modeling unequal classroom variances) 

employed.  The analyses reported below are based on fitted models in which these 

assumptions appeared to be at least approximately satisfied.  

 

An initial difficulty with several of the classroom-level predictor variables, such as the 

percentage of nonnative English speakers in a classroom, was their ragged and 

discontinuous nature.  For example, about 40% of the classrooms had less than 3% 

nonnative English speakers, another 25% of the classrooms had values between 5% - 7%, 

and, at the other end of the distribution, ten of the classrooms had values ranging between 

14% - 96%.  We explored various transformations of these variables with the goal of 

representing their variation in a more succinct form, and polytomized the distributions 

into quartiles as follows: 
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Table 5:  Definitions of Classroom Level Predictors 
 

Variable Quartile N Range (R) 
Class SES  1 10 R ≤ 15.38% 
 2 12 15.38% < R ≤ 23.53% 
 3 11 23.53% < R ≤  69.57% 
 4 10 R > 69.57%  
Class English Language Status 1 15 R = 0% 
 2 7 0% < R ≤ 5.36% 
 3 11 5.36% < R ≤  14.29% 
 4 10 R > 14.29%  
    
Class Spec Ed 1 15 R = 0% 
 2 7 0% < R ≤ 4.17% 
 3 11 4.17% < R ≤ 10.26% 
 4 10 R > 10.26%  
    
Class African American 1 19 R ≤ 5.27% 
 2 9 5.27% < R ≤ 10.71% 
 3 11 10.71% < R ≤ 33.3% 
 4 11 R > 33.3%  
    

 
Class Asian 1 15 R = 0% 
 2 7 0% < R ≤ 3.85% 
 3 11 3.85% < R ≤  8.7% 
 4 10 R > 8.7%  

 
Class Hispanic 1 17 R = 0% 
 2 3 0 < R ≤ 3.33% 
 3 12 3.33% < R ≤  9.52% 
 4 11 R > 9.52%  
Professional Development Hours 1 6 R = 65 
 2 8 65 < R ≤ 130 
 3 15 130 < R ≤  158 
 4 14 R > 158  
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Thus, each of the above classroom predictors was transformed to a scale in which each 

was represented with four values corresponding to the above quartiles.   

 

The HLM cross-sectional results are summarized in Table 6.  All statistical tests used a 

Type I error rate of α = .05.  Several general findings emerged across the SAT-9 subtests.  

First, there was substantial between-classroom variation in the Open Ended, Problem 

Solving, and Procedures subtest scores with classroom means of 34%, 38%, and 34%, 

respectively.   

 

Second, at the student level (level 1), prior mathematics knowledge was a statistically 

significant predictor in every model, although its effect expressed in NCE units tended to 

be modest (< 1).  Student-level SES was statistically significant in models for the Open 

Ended and Problem Solving subtests and demonstrated a moderate effect on mathematics 

performance.  Gender was never a statistically significant student-level predictor, and 

student attendance was only occasionally a significant (and weak) predictor of 

mathematics performance.  

 

Third, results for the Procedures subtest were somewhat different from those for the 

others, in that there were fewer significant effects. 

 

Fourth, there was evidence of differences in average classroom performance (level 2) 

between the large urban district and the remaining districts even when demographic 
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variables (e.g., SES and prior mathematics achievement) were held constant for the Open 

Ended and Problem Solving subtest analyses. 

 

Fifth, there was no evidence of contextual effects for SES or prior mathematics 

knowledge (Raudenbush & Bryk, 2002, pp. 149-141), meaning, for example, that the 

effect of SES on mathematics achievement was the same at the student-level and 

classroom-level. 

 

Other results were specific to particular subtests.  For the Open Ended subtest, student-

level SES was a significant predictor with an average slope of -3.36, meaning that, with 

the other predictors held constant, students eligible for a free or reduced price lunch 

tended to score slightly more than 3 NCE points below those not eligible.  There was a 

strong district effect in classroom means of -7.8, meaning that urban classrooms tended to 

score on average about 8 NCE points lower than suburban classrooms.  Other classroom 

effects were for SES (-3.14), prior mathematics knowledge (.72), special education (-

1.57), and the concentration of Asian students (1.28).  The latter finding means that, with 

other predictors held constant, increasing the concentration of Asian students by one 

quartile in a classroom was associated with average increases in Open Ended means of 

approximately 1.28 NCE points. 

 

For Problem Solving, SES again had a pronounced effect at the student level (-5.1), while 

at the classroom level there was an even larger district effect favoring suburban 

classrooms (-11.7).  Another statistically significant classroom effect was for the 
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concentration of Asian students in a classroom (2.58), meaning that a one quartile 

increase in this variable was associated with an increase in classroom Problem Solving 

means of 2.58 NCE points.  

 

Three small cross-level interaction effects for Problem Solving also emerged.  The slope 

capturing the effect of special education on the prior knowledge slopes was .09, meaning 

that increases in the concentration of special education students in a classroom tended to 

be associated with a (slightly) greater impact of prior mathematics knowledge on 

Problem Solving scores.  Second, increasing concentrations of students eligible for a free 

or reduced price lunch in a class had a significant effect on attendance slopes (.79), 

meaning that increases in this variable tended to be associated with classrooms in which 

lower attendance was associated with lower Problem Solving scores.  Third, increasing 

concentrations of nonnative English speakers in a classroom was also a significant 

predictor of attendance slopes (-.38), meaning that increasing numbers of nonnative 

speakers in a classroom tended to exacerbate the effect of attendance on Problem Solving 

scores. 

 

For Procedures, only prior mathematics knowledge was a significant predictor at the 

student level (.46), while at the classroom level special education students (-3.9) and prior 

mathematics knowledge (.53) were significant predictors of classroom means.  There 

were no between-district effects for Procedures. 
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In sum, the HLM cross-sectional results for the Open Ended and Problem Solving 

subtests were quite similar.  Student’s prior mathematics knowledge was a consistent 

predictor of mathematics proficiency, although its effect was modest, but student SES 

was a stronger predictor.  Strong differences between the urban and suburban classrooms 

also emerged for the Open Ended and Problem Solving subtests (-7.8 and  

-11.7 points, respectively), along with other, smaller, classroom effects such as the 

concentration of Asian students and students eligible for a free or reduced price lunch.  

For the Procedures subtest, only prior mathematics knowledge and the concentration of 

special education students in a classroom were significant predictors. 
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Table 6:  Results of HLM 

Dependent 
variable HLM Results 
Open 
Ended 

1. There was significant between-classroom variation in means (34%). 
2. There were significant within-classroom student effects for SES (-3.38), prior mathematics 

knowledge (.72), and attendance (.27).  Classroom Open Ended means and prior knowledge 
slopes varied significantly across classrooms. 

3. There was a significant difference between urban and suburban districts (-7.8) favoring 
suburban districts.  This effect accounted for approximately 30% of the variance in 
classroom Open Ended means. 

4. Concentrations of low SES students, expressed in quartiles, was a significant predictor of 
classroom Open Ended means (-3.14), meaning that shifting from the first quartile ( ≤  
15.38% eligible for a free or reduced price lunch) to the second quartile (15.38% < R ≤ 
23.53%)  produces an approximate decline of 3 points in classroom Open Ended means.  
Classroom prior mathematics knowledge (.72) was also a significant predictor of classroom 
means, along with special education (-1.57) and Asian students (1.28).  

5. Significant variation in classroom open ended means remained unexplained. 
 

Problem 
Solving 

1. There was significant between-classroom variation in means (38%). 
2. There were significant within-classroom effects for SES (-5.1) and prior mathematics 

knowledge (.63).  Intercepts and slopes for all student level predictors varied across 
classrooms.   

3. There was a strong district effect (-11.4) for classroom means, accounting for approximately 
19% of the variance in classroom means. 

4. Concentrations of Asian students in a class (2.58), expressed through quartiles, was also 
significant.  Classroom prior mathematics knowledge (.81) was a significant predictor of 
classroom Problem Solving means. 

5. The slope capturing the effect of concentrations of special education students on prior 
mathematics knowledge slopes was .09, meaning that increases in the percentages of these 
students (expressed through quartiles) in a classroom was associated with a slightly greater 
impact of prior mathematics knowledge on Problem Solving scores. Second, concentrations 
of low SES students had a significant effect on attendance slopes (.79), meaning that 
increases in this variable tended to be associated with classrooms in which the effect of 
attendance on Problem Solving scores was weaker. Increasing concentrations of nonnative 
speakers in a classroom was also a significant predictor of attendance slopes (-.38), meaning 
that increases in nonnative speakers exacerbated the effect of attendance on Problem 
Solving scores.  

6. Significant variation in classroom Problem Solving and the gender, SES, and prior 
mathematics knowledge slopes remained unexplained. 

. 
Procedures 1. There was significant between-classroom variation in means (34%).  

2. The only significant within-classroom predictor was prior mathematics knowledge (.46).  
Procedures means showed significant variation within classrooms. 

3. The largest classroom effect for classroom means was the concentration of special 
education students (-3.9), which accounted for approximately 44% of the variability in 
classroom Procedures means.  Classroom prior mathematics knowledge (.53) was also a 
significant predictor.  Classroom means continued to show significant variability.  There 
were no significant between-district effects. 
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Method 3: HLM-Based Predicted NCE Scores 

 

Another way to examine the impact of participating in a Standards-based curriculum for 

three years is to use the fitted HLM models for the one-shot data to predict SAT-9 scores 

for each of the classrooms in our sample.  Specifically, we examined patterns in the 

model-predicted (empirical Bayes estimated) classroom NCE means produced by the 

HLM5 software (Raudenbush, et al, 2000).  Comparing the predicted scores against the 

NCE mean of 50 (average performance) provides information about the expected 

performance of the classrooms, taking into account other factors such as prior 

mathematics knowledge and SES.  A summary of this information for the Open Ended, 

Problem Solving, and Procedures subtests appears in Table 7 for key classroom variables 

such as whether the classroom was urban or suburban, and concentrations of various 

subgroups.  For display purposes in Table 7 prior mathematics knowledge was 

polytomized into quartiles.  To try to avoid over-interpreting such results we report the 

average model-predicted classroom mean values simply as above or below the NCE 

average of 50.  We emphasize that these results have not been cross-validated. 
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Table 7:  HLM Predicted Scores 
 
HLM-Based Open Ended Predicted NCE Scores *** 

 

   
Class Prior 

achievement   Class SES   Class ELL  
Class Special 

Ed.  
District      1*  4**  1  4  1  4  1  4 
Urban   ↑   ↓   ↑  ↑  ↓   ↑  ↓
Suburban      ↑   ↑  ↑  ↑  ↑   ↑    ↑  ↑
 
 
HLM-Based Problem Solving Predicted NCE Scores 

 

   
Class Prior 

achievement   Class SES   Class ELL  
Class Special 

Ed.  
District     1*  4**  1  4  1  4  1  4 
Urban   ↑   ↓   ↓  ↑  ↓   ↑  ↓
Suburban      ↑   ↑  ↑  ↑  ↑   ↑    ↑  ↑
 
 
HLM-Based Procedures Predicted NCE Scores 

 

   
Class Prior 

achievement   Class SES   Class ELL  
Class Special 

Ed.  
District      1*  4**  1  4  1  4  1  4 
Urban   ↓   ↓   ↓  ↓  ↓   ↓  ↓
Suburban      ↑   ↓  ↓  ↓  ↓   ↓    ↑  ↓
 

*1st Quartile  
**4th Quartile 
↑ model-predicted NCE score above 50 
↓ model-predicted NCE score below 50 
*** See Table 5 for a description of the quartiles for the classroom predictors.  
ELL = English language status. 
 

Overall, 57% of the classrooms in the urban district were predicted to score above 50 on 

the Open Ended subtest.  The average predicted Open Ended score for urban classrooms 

classified in the 1st (highest prior mathematics knowledge) quartile was above 50, 

whereas the average of those in the 4th (lowest prior mathematics knowledge) was below 

50.  Similarly, the average predicted Open Ended score of urban classrooms with the 
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lowest concentration of non-native English speakers was above 50 and those with the 

highest concentration were below 50.  All 22 suburban classrooms (100%) were 

predicted to score above 50 on this subtest.  Because none of the urban classrooms 

appeared in the first quartile of Class SES (lowest concentration of students eligible for a 

free or reduced price lunch), average model-predicted values are not reported. 

 For Problem Solving, 71% of the urban classrooms and 100% of the suburban 

classrooms were predicted to score above 50..  The average predicted score for urban 

classrooms with the highest concentrations of non-native speakers, students eligible for a 

free or reduced price lunch, and special education students, or the lowest prior 

mathematics knowledge, was below 50.  

 For Procedures, only 9% of the urban classrooms were predicted to score above 

50, and only 27% of the suburban classrooms.  The average predicted scores of urban 

classrooms with the highest or lowest prior mathematics achievement and various 

concentrations of students eligible for a free or reduced price lunch, non-native speakers, 

or special education students were all below 50.  Only those suburban classrooms with 

the highest prior mathematics knowledge and the lowest concentrations of special 

education students had an average predicted score above 50. 

 

In sum, the general pattern in Table 7 for the Open Ended subtest showed that the 

average predicted score of most classrooms was above 50, whereas for Problem Solving 

sharper differences favoring suburban classrooms emerged.  Procedures showed a 

different pattern, with most average predicted classroom scores below 50 regardless of 

whether a classroom was urban or suburban.  This result is not entirely surprising because 
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Procedures was the only SAT-9 subtest in which every district except one scored on 

average below 50 (see Table 2). 

 

Method 4: Student Achievement of Standards-based Value-Added Students (Repeat 

Testers) 

Sub-samples of students sat for the SAT-9 test up to three times over a two academic year 

period. Analyzing these data provides a way to assess and interpret change over the 

indicated time span.  Scaled scores were used in the longitudinal analyses because they 

more adequately capture change.  However, scaled scores are calibrated such that they 

increase from one year to the next if a student has made expected progress.  For the SAT-

9 subtests, information supplied by the test publisher that takes into account the ages 

tested and the testing period indicates that a student scoring at the 50th percentile on the 

Open Ended subtest would have scores of 638, 646, and 654, corresponding to the Fall, 

2000, Spring 2001, and Spring 2002 testing, respectively.  For Problem Solving these 

values are 653, 663, and 670, and for Procedures the values are 671, 685, and 695. 

Looking at the resulting data, comparisons can be made of the average growth of student 

scores over the three test periods vis-à-vis the expected growth as determined by the test 

publisher.  Table 8 highlights the performance of the repeat testers over time for each 

district.  
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Table 8. Average SAT-9 Scaled Scores of the Repeat Testers 
 

Subtest OE1 
Oct,  
2000 

OE2 
Apr, 
2001 

OE3 
Apr, 
2002 

OE 
Growth 
1st-3rd 

PS1 
Oct,  
2000 

PS2 
Apr, 
2001 

PS3 
Apr, 
2002 

PS 
Growth 
1st-3rd 

PR1 
Oct,  
2000 

PR2 
Apr,  
2001 

PR3 
Apr,  
2002 

PR  
Growth  
1st-3rd 

Publishers 
Number 

638 646 654 +16 653 663 670 +17 671 685 695 +24 

Dist A 
(N=23-25) 

636  
(-2) 

638  
(-8) 

670 
(+16) 

+34 678 
(+25) 

678 
(+15) 

670  
(0) 

-8 674 
(+3) 

670  
(-15) 

674  
(-21) 

0 

Dist B 
(125-144) 

635  
(-3) 

631  
(-15) 

655  
(+1) 

+20 659  
(+6) 

673 
(+10) 

684  
(+14) 

+25 659 
(-12) 

678 
(-7) 

671 
 (-24) 

+12 

Dist C 
(32-49) 

637  
(-1) 

646 
(0) 

658  
(+4) 

+21 667 
(+14) 

678 
(+15) 

687  
(+17) 

+20 648  
(-23) 

705  
(+20) 

679  
(-16) 

+31 

Dist E 
(47-52) 

716 
(+78) 

670 
(+24) 

715 
(+61) 

-1 747 
(+94) 

772 
(+94) 

771 
(+101) 

+24 NV NV NV NV 

All available data for repeat testers were used to compute the values in this table.  Values in 
parentheses represent the range of sample sizes across the three testings.  District D had too few 
repeat tester students to warrant inclusion in this Table. 
 
OE1 = Open Ended Testing in October, 2000 
OE2 = Open Ended Testing in April, 2001 
OE3 = Open Ended Testing in April 2002  
PS = Problem Solving 
PR = Procedures  
NV = No data are reported for District E for Procedures because students were inadvertently 
allowed to use calculators during the October, 2000 testing and their scores are not valid.  
(    )  = Deviation from publisher’s 50th percentile scores 
N = number of students 
 

Open Ended: The 638 reported in Table 8 for the publisher’s number for the first Open 

Ended testing (October, 2000) is the scaled score reflecting 50th percentile performance 

for this subtest.  Over time, maintaining 50th percentile performance for this subscale 

requires students to score at least 646 in April, 2001 and 654 in April, 2002.  Students in 

district A scored on average two points below this value in October, 2000, 8 points below 

in April, 2001, but by April, 2002 scored on average 16 points above the value indicating 

adequate progress.  Table 8 also reports the average change in scaled scores from the first 

(where students started) to the last (where students ended approximately two years later) 
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testing.  District A showed an average gain of 34 scaled score points over the two-year 

period, meaning that by April, 2002 District A students were on average making adequate 

progress (and then some) on the concepts measured by the Open Ended subtest.  In fact, 

all four districts ended the eighth grade year with means above the scale score associated 

with the 50th percentile.  The district that did not show positive mean growth (District E) 

likely experienced a ceiling effect since their mean score ranged from the 97th to the 99th 

percentile rank.  It should be observed that 3 of the 4 districts, including the urban 

district, began the seventh grade year with means below the national expected scale 

score. 

 
Problem Solving:  All four districts ended the eighth grade year with means at or above 

the 50th percentile scale score.  Three of the four districts exceeded the publisher’s 

expected growth over the span. 

 

Procedures: One district did not produce valid scores for this subtest since calculators 

were erroneously used on the first administration of this subtest.  The results of the 

remaining three districts are mixed.  Two of the three districts began below the expected 

scale score and all three ended below the expected scale score.  One district exceeded 

expected growth and two fell short of expected growth on the Procedures subtest. 

 

Nine out of the 11 average growth values in Table 8 are positive, one is 0, and two are 

negative.  This means that in 8 of the 11 cases, students’ actual growth exceeded 

publisher’s expected growth over the two year time frame. 

 



  

 48

In addition to the descriptive statistics reported in Table 8, hierarchical linear modeling 

was used to assess change over time within each school district.  The advantages of an 

HLM approach with repeated measures data are that the measurement occasions do not 

have to be equidistant in time and students need not provide data for every occasion to be 

used in the analysis (Raudenbush & Bryk, 2001, pp. 160-176).  These models also have 

the advantage of estimating a growth trajectory (e.g., linear) for each student.  For each 

SAT-9 subtest we fitted a within-student model designed to estimate the linear growth 

rate, and a between-student model with prior mathematics achievement as the sole 

predictor.  In most cases the sample size used in the model-fitting was somewhat small 

(e.g., 25). 

 

Two key findings emerged from the HLM for the repeat testers that provide additional 

guidance in interpreting the results in Table 8.  First, there was substantial variability in 

the magnitude and direction of change within-students over time.  For example, one 

district showed positive mean change overall between the Fall, 2000 and Spring, 2002 

testings.  However, approximately 45% of the repeat testers in this district showed a 

negative change over time.  In some cases a student scored at or below average initially 

and then declined over time, but in other cases their initial scores were quite high and the 

decline quite modest.  There was also evidence that these patterns appeared both within 

and between particular subgroups, for example, high and low SES students.  These 

findings remind us that the evidence of adequate progress provided by the summary 

statistics in Table 8 does not apply to all students within a given district.  There remains a 

significant number of low achieving students in these districts. 
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Second, the HLM results (through tests of model-data fit) provided evidence that 

additional models and predictors should be examined.  For example, a model with prior 

mathematics achievement as a between-student predictor fitted the data better than a 

model without this predictor.  However, there were typically too few students to construct 

potentially more powerful predictive models.  The results in Table 8, which do not take 

other predictors into account, should be interpreted accordingly. 

 
Method 5:  Assessing the Achievement Gap 

The Elementary and Secondary Education Act of 2001 has as its focus the elimination of 

achievement gaps for various subgroups of students such as those of low SES and various 

ethnic groups.  Growth over time was not examined for districts D and E because of very 

small numbers of students.  With some schools’ waning interest in having their students 

tested a third time (an additional three hours of testing time for the SAT 9 added to 

testing requirements for the state assessment program), large numbers of our originally 

identified students had to be omitted from this analysis. 

 

We also examined the growth over time of students with high and low prior achievement 

by dichotomizing this variable at its median.  These data are summarized by district in 

Tables 9 and 10 for the Open Ended, Problem Solving, and Procedures subtests of the 

SAT-9.   
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Table 9:  Average SAT-9 Scaled Scores Over Time for High and Low Prior Achievement 
by District 
 
District A 
 

      Test Administration   
   Fall 2000  Spring 2002  Subtest 

(Scale Score)  
Prior 

Achievement  N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  13  654.2  21.4   677.2  10.6   Open Ended 
 Low  4  607.8  9.0  

46.4* 
 650.8  14.5  

26.4* 
 

-20.0 

                   
 High  12  697.2  27.1   711.4  21.4   Problem 

Solving  Low  5  644.8  6.0  
52.4* 

 665.0  23.5  
46.4* 

 
-6.0 

                   
 High  13  694.6  23.5   691.5  25.7   

Procedures 
  Low   6   628.0   37.4   

66.6* 
  646.2   21.9   

45.3* 
  

-21.3 

* p<0.05 
 
District B 
 

      Test Administration   
   Fall 2000  Spring 2002  Subtest 

(Scale Score)   
Prior 

Achievement   N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  61  656.6  30.4   673.67  24.4   Open Ended 
 Low  32  604.3  28.5  

52.4* 
 630  31.9  

43.7* 
 

-8.7 

                   
 High  63  687.3  34.6   707.06  35.4   Problem 

Solving  Low  35  620.8  32.4  
66.5* 

 649.86  25.8  
57.2* 

 
-9.3 

                   
 High  62  684.4  45.9   687.11  42.2   

Procedures 
  Low   33   620.0   32.4   

64.4* 
  639.67   29.1   

47.5* 
  

-17.0* 

* p<0.05 
 
District C 
 

      Test Administration    
   Fall 2000    Spring 2002    Subtest 

(Scale Score)   
Prior 

Achievement   N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  13  646.2  15.6   671.2  17.2   Open Ended 
 Low  14  623.6  17.5  

22.6* 
 649.4  21.8  

21.7* 
 

-0.9 

                   
 High  13  687.8  23.7   699.7  19.7   Problem 

Solving  Low  15  644.9  21.8  
42.9* 

 669.7  29.5  
30.0* 

 
-12.9 

                   
 High  13  660.4  38.3   698.3  22.3   

Procedures 
  Low   15   635.8   38.6   

24.6* 
  658.6   27.8   

39.7* 
  

15.1 

** p<0.05 
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Table 10:  Average SAT-9 Scaled Scores Over Time for High and Low SES by District 
 
District A  
 

   Test Administration  
   Fall 2000  Spring 2002  Subtest 

 ( Scale Score)  SES  N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  18  643.2  24.8   670.1  16.1   

Open Ended  
 Low  4  632.2  27.5  

11.0 
 671.3  16.0  

-1.2 
 

-12.2 

                   
 High  17  685.5  33.7   702.5  22.5   

Problem Solving  
 Low  5  664.8  19.6  

20.7 
 687.0  42.3  

15.5 
 

-5.3 

                   
 High  18  686.9  26.9   679.9  28.0   

Procedures  
  Low   6   638.0   47.9   

48.9* 
  660.0   31.7   

19.9 
  

-28.9 

*p<0.05 
 
District B 
 

   Test Administration  
   Fall 2000  Spring 2002  Subtest  

( Scale Score)  SES  N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  42  658.9  28.3   671.83  28.26   Open Ended  
 Low  59  623.4  38.0  

35.6 
 646.95  34.83  

24.9 
 

-10.7 

                   
 High  42  684.3  46.8   705.40  41.28   

Problem Solving  
 Low  65  650.6  40.69  

33.7 
 672.51  38.59  

32.9* 
 

-0.8 

                   
 High  42  677.9  50.28   682.86  45.91   

Procedures  
  Low   62   653.0   51.88   

24.8* 
  663.76   45.40   

19.1 
  

-5.7 

* p<0.05 
 
 
District C 
 

   Test Administration  
   Fall 2000  Spring 2002  Subtest  

( Scale Score)  SES  N  Mean  SD  Gap  Mean  SD  Gap  Change 
 High  26  639.1  16.5   659.5  20.9   

Open Ended  
 Low  6  618.7  20.1  

20.4* 
 649.5  30.1  

10.0 
 

-10.5 

                   
 High  29  668.6  31.8   690.4  25.6   

Problem Solving  
 Low  6  649.2  26.2  

19.4 
 670.8  41.8  

19.6 
 

0.1 

                   
 High  29  647.7  45.0   681.8  31.5   

Procedures  
  Low   6   636.5  25.5  

11.2 
 663.2  32.0  

18.7 
 

7.5 

* p<0.05 
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An asterisk means that the mean difference is statistically significant at the .05 level.  An 

examination of the Gap columns indicates that every difference between the prior 

achievement groups was statistically significant at both points in time.  For example, the 

gap between the High and Low achievement groups in District A in Fall 2000 on the 

Open Ended subtest was statistically significant (46.4), and persisted in Spring 2002 

(26.4).  Although the patterns among the sample means suggest that the gap favoring high 

prior achievement students over low prior achievement students shrank between Fall, 

2000 and Spring, 2002, there was no statistical significance indicating that the gaps 

between groups changed over time.  For example, the Change value of -20 for District A 

on the Open Ended test indicates that while the mean difference between the High and 

Low prior achievement groups decreased by 20 points, they were statistically the same in 

Spring, 2002 as they were in Fall, 2000.   

 

Only one value in the Change column was statistically significant, High and Low prior 

achievement groups in District B for Procedures.  Seven of the remaining 8 Change 

values were not statistically significant but were negative, providing descriptive evidence 

that the process of narrowing the gap among High and Low prior mathematics 

achievement groups might be underway.  Patterns for high and low SES students in Table 

10 were similar to those reported in Table 9 for high and low prior achievement. 

 

It is important to point out that listwise deletion (which requires that the same subjects 

provide scores at both time points ) was used in producing the results in Tables 9 and 10.  

This allowed us to test the change between groups over time.  This decision also lowered 
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the sample sizes.  More importantly, this raises the possibility of bias.  To investigate this 

empirically, the analyses comparing the High and Low prior achievement and SES 

groups at each time were repeated using listwise deletion versus using all available data.  

The sample sizes for listwise deletion versus using all available data tended to be most 

different for larger samples, although on the whole the change was not dramatic (e.g., 12 

versus 13, 61 versus 76).  Similarly, the means and standard deviations of the scaled 

scores with and without listwise deletion were generally quite similar.  Only one of the 18 

t-tests comparing High and Low prior achievement groups for Fall, 2000 and Spring, 

2002 produced a statistically different result from listwise deletion.  Likewise for SES, 

only one of the possible 18 t-tests produced a different result.  We chose to use listwise 

deletion in generating Tables 9-10 because the two sets of results (with and without 

listwise deletion) in Fall 2000 and Spring 2002 were quite similar, and because this 

allowed for change to be tested statistically.  However, we acknowledge the possibility of 

some bias in testing the change values. 

 
 
 
 
Discussion 

Section 1:  Descriptive Data 

The descriptive results reported in Table 2 show that on the SAT-9 tests designed to 

measure traditional content, students enrolled in Standards-based mathematics curricula 

performed above the NCE national mean of 50 on the Open Ended and Problem Solving 

subtests. Students were generally below the NCE mean of 50 on the Procedures subtest. 
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These results suggest that students are learning traditional topics but are also lacking in 

paper and pencil procedural skills.  This result parallels the findings of other studies of a 

similar nature. (Schoen, et. al., 2003 and Senk and Thompson, 2003).   Since these 

curricula consciously spend less time and effort developing student skills in paper and 

pencil calculations, these procedural subtest results may be largely a matter of reduced 

time-on-task in this area. 

 

Although students were, on the whole, performing at or above expectations on two of the 

three SAT-9 subtests, the performance of various subgroups differed sharply.  Students in 

the high SES and native English speaker groups on average scored substantially higher 

than those in the low SES and nonnative English speaker groups.  Among the ethnic 

groups represented in the sample, White students uniformly produced the highest 

averages, with African-American and Hispanic students scoring significantly lower.  

There were no differences among male and female students on any of the SAT-9 subtests. 

There was substantial variation in average SAT-9 performance among classrooms, 

however. 

 

One set of district results is particularly noteworthy.  The results reported in Table 3 show 

that students enrolled in the Standards-based mathematics curricula in one of our districts 

far outperformed national norms. The New Standards Reference Examination, which is 

more closely aligned to the NCTM Standards, purports to measure conceptual 

development, problem solving and traditional skills and admits the use of calculator 
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technology.  District E was the only one that elected to use the New Standards Test and 

was the highest achieving of our districts. 

 

The often heard criticism from opponents of Standards-based curricula that high 

achieving students will be “held back” is soundly refuted in these related results from one 

of our districts.  District E was the most affluent and high achieving district, and had 

implemented Standards-based curricula for all of its students at the elementary (Everyday 

Mathematics), middle grades (CMP) and high school (Core Plus) levels.  This district in 

Spring 2003 reported that the number of high school students taking the AP Calculus 

exam (BC) jumped from 50 to 67 between 1999, the last year of traditional students, and 

2003.  The passing rate with a score of 3 or better during this period increased from 64% 

to 87%.  For AB calculus, the corresponding numbers were:  the number of students 

increased from 10 to 16 and there was an increase in the percentage with a grade of 3 or 

more from 30% to 81%.  Similarly, the number of students taking the AP statistics exam 

increased from 31 to 71 between 1999 and 2003.  The passing rate, with a score of 3 or 

higher, during this period also increased slightly from 74% to 76%.  In 2003, all high 

school students  had  been  exposed  only to the CMP and Core Plus programs since 

grade 6 (District E, 2003). 

 

Such information, relating to District E, certainly undercuts the viability of the premature 

and irrational claims of the “mathematically correct” and other anti-reform organizations 

related to lack of success and college readiness.  District administrators need to 

understand that Standards-based curricula do not impede the mathematical performance 
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and development of high achieving students when they make curricula adoption 

decisions. 

 

Section 2: HLM Across-District Results Discussion  

 
The HLM results for the Open Ended and Problem Solving subtests indicated that prior 

mathematics knowledge was a consistent predictor of mathematics performance on these 

subtests at the student and classroom levels, although the effect was modest in size.  

Socio-economic status was a stronger predictor of mathematics performance at both the 

student and classroom levels, with higher SES linked to higher performance.  Whether a 

classroom was in an urban or suburban school also impacted achievement, with strong 

differences favoring suburban classrooms emerging.  Higher student and classroom prior 

mathematics scores were also associated with higher Procedures scores.   

 

The effect of prior achievement on assessments of student understanding has been well 

documented elsewhere in terms of traditional mathematics instruction  and alternative 

mathematics programs (e.g., Begle, 1973).  Our analysis suggests that prior achievement 

is a significant predictor (though small, less than 1 NCE point on average) of student 

achievement on all three SAT-9 subtests.  This finding underscores the position that 

achievement gaps need to be addressed early in students’ academic careers. 

 

Boaler (2003) suggests that gaps between low and high SES decrease over time when 

students are involved in an Open Ended project-based curriculum.  The present study 

found results favoring the high SES group on both the Open Ended and Problem Solving 
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subtests of the SAT-9.  This effect was moderate, consisting of 3.38 NCE points on the 

Open Ended subtest and 5.1 NCE points on the Problem Solving subtest.  Student 

achievement on the Procedures subtest, however, was not significantly associated with 

student level SES.  Our explanation for this finding is that the more context-bound and 

language intensive Problem Solving and Open Ended assessments may be more difficult 

for students of low SES for reasons described by Lubienski (2000).   

 

High percentages of nonnative speakers, low SES students, and high percentages of 

minority students are commonly associated with urban schools (Grant and Tate, 2001).  

When these independent variables were accounted for in the HLM model employed, 

large significant differences between urban and suburban classrooms on the Open Ended 

and Problem Solving subtests remained. There apparently are other student or classroom 

predictors associated with urban and suburban schools that were not accounted for in our 

model (e.g., class size, degree of parental involvement, education level of parents, etc.). 

 

Much research has been conducted on the importance of school and classroom culture 

when considering factors that affect student achievement (Finnan, 2000; Pang, 2003).  

Examining the effect of classroom level predictors on student achievement enables us to 

describe this classroom culture quantitatively.  For example, as the percent of special 

education students increases in the classroom this tends to increase the association 

between prior mathematics knowledge and Problem Solving.  That is, as the percent of 

special education students in the classroom increases, prior knowledge plays a bigger role 

in predicting student achievement on SAT-9 subtest scores.   
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Section 3: Predicted Classroom NCE Scores 

The fitted HLM models were used to predict the performance of classrooms on the SAT-

9 subtests with statistical control of other variables, such as SES and English speaker 

status.  It’s important to remember that the students in these classrooms had been in a 

Standards-based curriculum for three years. 

 

The results for the Open Ended subtest showed that the average predicted classroom 

scores generally exceeded the test publisher’s cutoff of satisfactory performance for the 

two year period, despite varying prior mathematics knowledge and classroom 

composition.  These patterns somewhat favored suburban over urban classrooms.  For the 

Problem Solving subtest sharper differences in average predicted scores favoring 

suburban classrooms emerged.  For the Procedures subtest, none of the urban classrooms, 

and few of the suburban classrooms, had an average predicted score above 50. 

 
Section 4:  Value-Added Component 

The Value-Added (repeat testers) component was designed to evaluate achievement 

patterns for students in middle school reform curricula.  In value-added situations each 

student serves as their own control, allowing patterns of actual growth to be quantified 

and compared with patterns of expected growth.  Table 8 reported average growth over 

time for these students.  It should be noted that considerable variation occurred in student 

growth patterns. 

 



  

 59

All four districts with repeat tester data ended the eighth grade year with Open Ended and 

Problem Solving means exceeding the publisher’s cutoff for satisfactory performance, 

and three of the four districts showed growth over two years that exceeded the publisher’s 

expectations.  The results were mixed for Procedures, with one district exceeding 

expected growth and the remaining districts falling short. 

 

On the Open Ended subtest, the observed mean growth in scale scores exceeded the 

expectations of the test publishers in all cases except for the high SES suburban district.  

This district likely experienced a ceiling effect since their mean scores ranged from the 

97th to the 99th percentile. It should be observed that 3 of the 4 districts, including the 

urban district, began the seventh grade year with means below the national average (50th 

percentile) expected scale score.  All districts ended the eighth grade year with means 

above the national average expected scale score, suggesting progress in students’ ability 

to set up and solve problems that are open ended in nature. 

 

 On the Problem Solving subtest, all four districts ended the eighth grade year with means 

at or above the national expected scale score, also calibrated at the 50th percentile.  Three 

of the four districts exceeded the publisher’s expected growth over the span.  The district 

that did not exceed the expected growth finished the eighth grade year at the publisher’s 

expected performance level.  Students performed satisfactorily on the SAT-9 Problem 

Solving subscale.  Problem solving is an important focus of all reform curricula and a 

major thrust in both the NCTM standards documents (1989 and 2000). 
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On the Procedures subtest, two of the three districts were initially (October 2000) below 

the expected Procedures scale score and all three ended (April 2002) below the 50th 

percentile scale score.  This would lead one to believe that the issue of hand calculation 

has its roots in early grades and continues on into middle school.  Due to the manner in 

which Standards-based curricula have been constructed, it is probable that classroom 

teachers in this study did not focus heavily on developing procedural skills.  This might 

also be a logical extension of their observation and belief that the routine use of 

calculators and spreadsheets more realistically reflects real world situations.  From this 

perspective, the curricula do not value procedural knowledge as highly as problem 

solving ability.  It seems that students are indeed learning what they are being taught.  

 

These results provide an opportunity for teachers, researchers and the public to discuss 

what exactly is valued in a middle school math curriculum.  Can schools do it all?  For 

all?  What computational skills are basic?  Who decides what society values in the area of 

computation?  What mathematical abilities does the average citizen need to function well 

in our society?  Is there a separate set of computational skills that future math-oriented 

students need for success?  If so, what are they?  Can society afford to implement a 

curriculum whose primary purpose is to benefit the 4% - 5%* who pursue math related 

careers? 

 
* “Between 4 and 5 percent of an age group will major in Mathematics, 
Science, or Engineering, one of the traditional mathematics-intensive 
disciplines. This percentage has been fairly constant since the 1950’s 
through both mathematics reform and “back-to-basics” movements. 
Majors grow or shrink by reapportioning students in this 5 percent 
group.”  (Mathematics and the Mathematical Sciences in 2010: What 
Should Students Know? MAA, 2000) 
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Section 5:  Achievement Gaps 

 

With respect to high prior achievement vs. low prior achievement, Table 9 shows some 

evidence of a narrowing of the achievement gap between students with high and low 

prior achievement levels in the three districts for whom we had a value added (repeat 

testers) component.  We examined the gaps as relating to the low prior achievement vs. 

high prior achievement as applicable to the SAT-9 Open Ended, Problem Solving and 

Procedures NCE subtest scores measured over the three testing periods between Fall 

2000 and Spring 2002.  Our results provide little statistical evidence of a narrowing of the 

achievement gap between students with high and low prior achievement levels or in the 

high and low SES groups.  On the other hand, there was no evidence that the gaps were 

widening. 

 

We don’t want to attach too much weight to the descriptive statistics, but it is striking that 

the achievement gap between high and low levels of prior achievement decreased in 8 of 

the 9 comparisons.  Only one of these was statistically significant, however. Likewise, in 

7 of the 9 contrasts between high and low levels of SES there was descriptive evidence 

that the achievement gap decreased.  In the case of SES, none of the comparisons were 

statistically significant. 
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One can argue that it is easier to improve from an NCE score of 40 than it is to improve 

with an initial score of 60 or higher given that there is much more room for improvement 

in the lower achieving case.  Thus the descriptive evidence that the gaps may be 

narrowing is not unexpected given comparable curriculum, instruction and time on task.  

It is unlikely that the achievement gap can be entirely eliminated as some national 

initiatives have suggested (NCLB).   One has to consider what it is that the higher 

achieving students are doing while the lower achieving students are busy closing the gap.  

The answer of course is that they are continuing to exhibit the behavior that resulted in 

their becoming the higher achieving students in the first place, and they are most likely 

continuing to benefit from the extra-class types of support normally associated with 

higher achieving students.  The narrowing of the gap is of course a viable educational 

goal, one that seems more likely to be achieved now with the emergence of Standards 

based curricula.   All students can now be realistically and consistently exposed to 

significant and powerful mathematical ideas with the use of these curricula.   

 

The Standards -based curricula offer exceptional promise in this regard, as they were in 

every case designed for the vast majority (80% – 90%) of school students.  This is a  

non-trivial distinction.  In the not too distant past lower achieving students were, 

routinely redirected away from powerful mathematical ideas and placed in remedial 

situations.    Here they were ‘one more time’ re-exposed to arithmetic algorithms and 

other numerically oriented basic skills. Such skills rarely were intended to lead to higher 

level coursework where other and perhaps more important mathematical ideas are 

developed.  Mathematics had become a filter of students.   Most contend today that 
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mathematics must become a pump (e.g., Steen, 1987), by increasing the number of 

students who will be involved in higher levels of educational achievement, and involving 

a greater range of students in the mathematical enterprise for a longer period of time.  It is 

plausible that a good portion of the routinely observed achievement gaps in mathematics 

are, in a significant way, a result of uneven exposure to powerful mathematical ideas.  As 

all students become accustomed to, and comfortable with, continuous exposure to 

important and powerful concepts, it is likely that the gaps will decrease. 

 

 Two things seem clear from these results.  First, the achievement gaps are real.  They are 

large and they persist between different populations of students over time.  In many cases 

the gap amounted to a full standard deviation.  Secondly, in this study, prior achievement 

was repeatedly a significant predictor of future achievement.  It is important to “get it 

right” early in the child’s educational career.  It follows that increased attention must be 

paid to every student’s mathematical (and other) development at the pre-school and early 

primary education levels.  This is where students begin to be sorted out, and sort 

themselves out, by their attention, motivation, achievement levels, and often, by the 

expectations of their teachers. Additional commitment must be extended into each of the 

elementary grades to ensure that when students reach the junior high level, achievement 

gaps will be as small as possible and certainly less than presently observed.  This assumes 

of course that at each level all students are exposed to significant mathematics, and 

regularly participate in activity promoting high levels of mathematical thinking.  This is 

not the case at present 
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Broader Implications 

These results indicate that middle grades students in the five districts discussed here who 

have been involved with either the MathThematics (STEM Project) or the Connected 

Mathematics Project (CMP) Standards-based mathematics curricula for three consecutive 

years demonstrated achievement patterns on the Stanford 9 that in general exceeded the 

means of the national samples upon which the SAT-9 was normed.  The results are also 

promising on the New Standards exam, with roughly two and one half to four times the 

percentage of students in our sample meeting or exceeding the standards relating to 

Mathematical Skills, Mathematical Concepts and Mathematical Problem Solving when 

compared to the national norming group.  Results on the SAT-9 Procedures subtest 

showed that four out of five of the districts scored below the mean of the national 

norming group.  Given the decreased amount of attention to algorithmic development in 

these curricula, these results may reflect a time-on-task result. 

 

The Stanford 9 and the New Standards tests, although not the most “conservative” 

measures available, are primarily attuned to traditionally oriented content.  There are 

topics which Standards-based students have studied that are either inadequately assessed 

or are absent altogether from the two assessments used here.  At the middle grades level 

quadratic and exponential growth, topics in transformational geometry, rational numbers, 

probability and statistics, and others fall into this category.  Instructional approaches 

which focus on complex and extended problems whose multi-faceted solutions may 

require several days rather than several minutes of investigation, are unique to the 

Standards-based curricula.  Such competencies are also not addressed in the two 
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assessments used here.  This study was therefore not able to address important questions 

related to complex problem solving nor to the assessment of many of the non-traditional 

topics such as those mentioned above.  

 

Having said that, recall that this study was motivated by a different set of concerns.   

Participating (MASP)2  school district administrators were faced with parent concerns 

that their students were not learning the sets of skills contained in traditional coursework 

and therefore would not be prepared for college mathematics, especially the calculus. 

This concern was a bit premature since those concerned parents referred to here had 

children who were only in the middle grades.  This concern was encouraged by several 

mathematicians from our university mathematics department who have, for the past four 

years, visited many of the (MASP)2 districts with the message that students in Standards-

based curricula will be  unprepared for college calculus.   Although their major focus was 

at the high school level their message nevertheless percolated down to the middle grades 

parents. To our knowledge there are no published studies to corroborate their concerns, 

although we know of several web circulated documents.    

 

We now provide a glimpse into the district politics relating to the implementation of 

Standards-based curricula.  As will be seen, the waters have not always been calm.  This 

despite the fact that there is published evidence from other studies suggesting that when a 

Standards-based curriculum is fully implemented with fidelity, students achieve at a rate 

which is significantly higher than in classrooms where teachers regularly select, 

supplement and significantly modify the Standards based mathematics curriculum. 
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(Briars 2000, Senk & Thompson, 2003)  With a dozen or so exceptions, we simply do not 

know the extent to which teachers in this study have abided by program directives 

relating to instruction in both content and method. There is anecdotal evidence that some 

teachers supplemented with skill directed worksheets.  We can say that teachers in these 

classrooms averaged 165 hours of professional development with at least 100 of those 

hours targeted specifically to the curriculum they were teaching.  This professional 

development included 20 personalized in-class contact hours with a mentor teacher 

whose purpose was to support and help develop instructional proficiency with the 

curriculum in question.  Every teacher in the study had at least 65 hours of professional 

development. 

 

The anecdotal evidence which we do have on this issue of fidelity of implementation 

suggests that there is considerable variation in teachers usage patterns, and, that in some 

of our districts teachers actually worked to discredit the Standards based programs 

altogether.  This is counterintuitive since traditionally oriented standardized tests were 

used in this study, and lower achieving districts tended to be those with overt attempts to 

subvert the Standards-based curricula by re-emphasizing more traditional topics.  One 

would think such classrooms would do well on these standardized measures.  The 

evidence for such subversion, however, is sporadic and anecdotal, and was not 

systematically collected.   

 

The HLM results document that when prior knowledge and several other demographic 

variables were taken into account there continued to be significant achievement 
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differences between the urban and suburban districts.  There really are no surprises in our 

data relating to the impact of demographic variables on student achievement.  That is, 

urban, low SES, nonnative speakers and low levels of prior achievement are all 

associated with lower achievement levels on the standardized tests.  

 

In conclusion, we find that when Standards-based students’ achievement patterns on 

these two standardized instruments are analyzed, traditional topics are learned, although 

the evidence here is that students’ achievement levels on the Open Ended and Problem 

Solving subtests are greater than those on the Procedures subtest.  This is in addition to 

whatever benefits might accrue from the use of the broader scoped, the more contextually 

based, and the increased emphasis on extended problems of the Standards-based 

curricula.  This finding is consistent with results documented in many of the studies 

reported in Senk and Thompson (2003), and other sources.  This study was not designed 

to evaluate those additional projected benefits.  

 

Valid and reliable instruments that adequately measure the new content and processes 

inherent in Standards-based curricula are challenging to develop, will be cumbersome to 

administer and time consuming to score.  The variety of instruments to be used in future 

NCLB assessments hold no promise in this regard, as they will of necessity focus on low 

level factual knowledge and procedural skills.  The next step in ongoing research efforts 

in this area should paint a portrait of the content and processes that students in Standards-

based curricula learn that are above and beyond traditional mathematical topics 

considered at the grade levels of interest.  In a parallel effort, it will be important to 



  

 68

conduct studies that document the related situation, or what traditional students are 

learning that Standards-based students are not.  It will then be possible to ask and answer 

the question “What kind of student mathematical outcomes do you value, and which type 

of programs are most likely to produce them?” 

 

In conclusion, this study suggests that Standards-based middle grades students do learn 

traditional mathematical topics, but do not develop high levels of procedural skills. 
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Appendix A – Sample Test Items from the SAT-9 

Procedures 
Multiple Choice Items;   
Read each  question and select the best answer. 

1) 5 1/2   A  7 1/2  C    7 1/6 
    +   2 1/4   B  7 3/4 D   7 1/8 
__________    E 8 3/4 
 

Problem Solving 
 

2) On a totem pole, the eagle was above the bear.  The beaver was under the thunderbird.  The 
thunderbird was above the eagle. Which animal was on the top of the pole? 

F   Thunderbird     G   Bear          H Beaver        J   Eagle   .  
 
SAT- 9 High School Edited Sample items 
 

1) When Mr. Tillen meets a client, the probability that he will make a sale is 1/4. How many sales 
can he expect if he meets 144 clients? 

A  145 B   36  C  24  D  12 
 

2) After t seconds, the velocity, v, of a basketball thrown upward at 256 feet per second is given by the 
equation 

v = 128 − 32t 
 
After how many seconds will the velocity equal zero? 
 
F 4, G 6, H 8, J 12 
 
3) A point at (1, -1 ) is reflected across the line shown on the grid. 
 

 
What will the coordinates after reflection? 

F (-1,1), B (0,0),    C  (-2, -4),   (-4,-2) 
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Appendix B – Sample Test Items from the New Standards Reference Examination 

Middle School Medium Task 
 
How Fast? 
 
In this task, your job is to show a method for figuring a person’s biking speed in miles 
per hour and explain how to use the method for any biking speed. 
 
Henry wants to use the number of pedal rotations he takes each minute to figure out his 
approximate biking speed in miles per hour.  He knows that  

a. the distance he travels in one pedal rotation, called “rotation distance” is very 
close to 5 feet; 

b. he takes about 60 pedal rotations each minute; 
c. there are 5,280 feet in a mile; and 
d. there are 60 minutes in an hour. 

 
 
 
 
 
 
 
 
 
 
High School Short Task 
 
In this task you are asked to explore if the melted ice cream will fit into the cone or if it 
will spill over. 
 
The ice cream and cone below are drawn accurately and at full size. 
If the scoop of ice cream is placed on top of the cone and its melts down into the cone, 
will all the ice cream fit inside the cone. 
 
 
 
 
 
 
 
Picture of a sphere here.               Picture of a cone here. 
 

 

State a rule or formula that can be used to approximate biking speed in miles 
per hour (mph) based on the number of pedal rotation taken in one minute. 
 
Be sure to explain your rule or formula clearly enough that it can be used by 
any biker. 

Show whether the melted ice cream will fit inside the cone.
For full credit, you must show your calculations and reasoning. 


