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I don’t know where I came up with this title. They make us submit proposals for talks ten
months in advance and at that point you think “I can talk about anything.”

When I was in junior high school and was doing very well in math and couldn’t understand
why everyone didn’t, my mother, a very intelligent well-educated woman who excelled in fields
other than mathematics said to me, “Just wait till you get to logarithms. Then you won’t understand
it so well.” Like just wait till you have children of your own ...

One night I was watching “The West Wing” and two characters were sparring verbally
(about football?). One of them had gone to Berkeley and one to Princeton. The Princeton grad said,
“My tigers can beat your bears anytime.” And the Berkeley grad replied, “At what, logarithms?”

If math is a metaphor for things arcane and obscure and incomprehensible, not to mention
boring, then logarithms exemplify that.

I want to talk today about logarithms and how they have been important historically in
mathematics and how they are important in mathematics today for an entirely different reason
(which I find very intriguing). I believe that, just as we can have more success in helping students
learn mathematics if we make it more meaningful and interesting, we can help students learn this
somewhat intimidating topic if we put it in a context they can understand.

But first I want to address the issue of loving
 logarithms. One reason we can love them is because [Picture of
they are beautiful, not just mathematically but logarithmic
esthetically. Consider the logarithmic spiral. This is what spiral]
it looks like. This is a spiral with the property that any
straight line through the origin will intersect a logarithmic
 spiral at the same angle. The equation of this spiral is

r = eaQ

in polar coordinates. The constant a determines the rate of growth of the spiral; the sign of a
determines if the spiral is right or left-handed.

Logarithmic spirals occur many places in nature:  the shell of the chambered nautilus, the
arrangement of florets in the core of daisy blossoms, and the arms of spiral galaxies. They also
occur in art, such as in Escher’s print “Whirlpools”. [See references.]

Three Important Facts about Logarithms

They have played an important role in the history of mathematics. (And science it turns out)

They are important in mathematics today.

They are not hard if you remember one simple fact.

Let me start at the bottom.

Logarithms are Exponents



log2 8 = 3    means   23 = 8

What do you do when you see      Log3 x = 4?

You think  34 = x. Aha!

The Simple Truth:  Logarithms are Exponents
And we are not afraid of exponents

Why are logarithms so hard for so many people?  I think one reason is the notation. I had
one student who would consistently say

log 2 to the 8th   for   log2 8

So while logs are exponents the notation doesn’t imply the correct relationship between the
base and the exponent.

I think another reason is that they are transcendental functions. That is, we can add, subtract,
multiply, and divide and still can’t get to the bottom of them. Transcendental functions are hard,
harder than algebraic, but students must learn to deal with them or they’re going to be lost in
trigonometry beyond memorizing a few values. I think there are some mathematical leaps we ask
students to make, times when they’re asked not just to do more of the same, not just to work longer
or harder problems, but to make a real cognitive leap. I think negative numbers are one such leap
and the idea that a letter can be a number is another. And transcendental functions are yet another.

But if we remember that they’re exponents ... they’re not so hard.

Logarithms have been important in the history of mathematics

Logarithms are exponents, the power to which a number, such as 10 (called the base), is
raised to yield a given number. Since exponents are added when two numbers are multiplied
together, the logarithm of a product is the sum of the logarithms of the factors. Likewise, when one
number is divided by another, the exponent of the divisor is subtracted from the exponent of the
dividend. Calculations using logarithms involve adding and subtracting instead of multiplying and
dividing. Logarithms can also be used to raise numbers to powers or extract roots by multiplying
and dividing. Using logarithms replaces more complicated computations with simpler ones.

The scientific advances of the sixteenth and seventeenth centuries (Copernicus, Galileo,
Kepler) involved greater and greater amounts of numerical data so scientists were spending much of
their time doing tedious calculations. We don’t know exactly how the Scottish mathematician John
Napier (1550 - 1617) first developed logarithms but he knew about

sinA sinB = _[cos(A – B) – cos(A + B)]     (Identities like this were known in 11th C Egypt)
and that qm qn = qm+n

for positive integers. Napier extended this rule to real numbers.
Napier spent the years from 1594 to 1614 computing log tables using base 1 – 10-7 .  An

English mathematician named Henry Briggs (1561 – 1631) convinced Napier to use 10 as a base. In
1624 Briggs published base 10 logarithms from 1 – 20,000 and 90,000 to 100,000. The gap was
filled by a Dutch publisher Adriaan Vlacq in 1628 and this was the basis for logarithms until 1949
when a set of tables to 20 places was published in England.



Within a few decades following Briggs’ publication scientists and mathematicians
throughout the world were using logarithms for their calculations. Kepler was one of the first to use
logarithms and his Third Law can be represented logarithmically.  Anyone using logarithms for
computations had to use the tables to look up the logarithm of each number in the calculation. This
could be a tedious task (though not as tedious as calculations without logarithms) and the tables did
contain errors. This inspired the eminent French mathematician Pierre Laplace said, “By shortening
the labors, the invention of logarithms doubled the life of the astronomer.”

But logarithms had yet another contribution to make. An English astronomy and
mathematics teacher named Edmund Gunter (1581 – 1626) plotted logarithms of numbers on a line
(called Gunter’s Line of Numbers) and multiplied and divided numbers by adding and subtracting
lengths on the line. An English clergyman named William Oughtred (1574 – 1660) refined Gunter’s
line by using two pieces of wood which slid against each other. Each piece of wood contained a
scale in which the distance of a number from the end of its line is proportional to its logarithm. To
multiply two numbers, one of the numbers is lined up with 1 and the product appears opposite the
other number. Division reverses the process. The slide rule was not accurate to many decimal
places. It also required the user to keep track of where the decimal point belonged.

The slide rule does not count, or add and subtract, like the counting tables and the abacus.
Distance on a scale represents a number and the distance is determined by the logarithm of that
number. Devices such as this are called analog computers. A clock with hands is an analog
computer, with a thirty-degree movement of the minute hand representing five minutes.

Despite its drawbacks, the slide rule was enormously successful. It eliminated the need for
using tables of logarithms. The slide rule was used by scientists and mathematicians, as well as
students, for over three hundred years until it was replaced by the electronic hand-held calculator
beginning in the 1970s.

Logarithms Today

Logarithms may have outlived their usefulness as computational devices but they are far
from finished! Since they are the inverse of the enormously useful exponential function they are
helpful in solving exponential equations.

One application of exponential equations is carbon 14 dating. The following is the equation
for dating a piece of bone in which the carbon 14 has decreased from 100 mg. to 70 mg. The
numbers 5570 and 0.5 represent the fact that the half life of bone is 5570 years. A is the current
amount of carbon 14 in a substance and A0  is the original amount.

A = A0 (0.5)t/5570

Solving for t given that A = 70 and A0 = 100: 70 = 100 (0.5)t/5570

Dividing both sides by 100: 0.7 = (0.5)t/5570

It isn’t at all clear how to solve for t algebraically, but since the logarithm function is one-to-
one we can take the log of both sides:

log 0.7 = log (0.5)t/5570

Then applying the exponent property of logarithms: log 0.7 =t/5570 log (0.5)



Getting the values for the logs from a calculator and applying simple algebra gives t as
approximately equal to 2866 years.

There are many other occasions for solving for variables which appear in exponents in
equations, such as finding the amount of time it will take an investment at a certain interest rate to
reach a given amount or solving problems related to population growth. The laws of logarithms can
help us solve these problems.

There are also logarithmic functions which are interesting. Three of these are the following:

1. Computing the pH of a substance pH = -log (H+)

where H+  is the concentration of hydrogen ions in the substance.

2. Measuring the percent of light (P) passing through a substance log P = -kd

where k is a constant related to the opacity of the substance and d is the thickness in meters.

3. Measuring the magnitude of an earthquake

We’ll return to earthquakes later. Meanwhile, look at this chart.

The distance from the Earth to the Sun is called one astronomical unit (AU). The distances (d)
of the other planets to the Sun can be expressed in AUs. The time the Earth takes to circle the
Sun is one year; the times of revolution (T) of the other planets can be expressed in Earth
years as well:

Planet d (km in  d (AU)    T (in  years)
millions)

Mercury      57.9 0.387 0.241

Venus   108.16 0.723 0.615

Earth        149.6 1.000 1.000

Mars   227.84 1.523 1.881

Jupiter   778.37 5.203 11.861

Saturn 1427.33 9.541 29.457

Uranus 2870.82 19.190 84.008

Neptune 4500.87 30.086 164.784

Pluto 5910.25 39.507 284.35

Notice that the farther a planet is from the Sun the more time it takes to complete one
revolution around the Sun; this makes sense because it has farther to go. But exactly what is the



relationship between a planet’s distance from the Sun and its time of revolution? Whatever it is, it
doesn’t look straightforward.

Now look at an expanded version of the table.

Planet d (km in  d (AU)    T            log d log T                                        
millions) (in  years)

Mercury      57.9 0.387 0.241 -0.4123 -0.6180

Venus   108.16 0.723 0.615 -0.1409 -0.2111

Earth        149.6 1.000 1.000     0      0

Mars   227.84 1.523 1.881 .1827 .2744

Jupiter   778.37 5.203 11.861 .7163 1.074

Saturn 1427.33 9.541 29.457 .9796 1.469

Uranus 2870.82 19.190 84.008 1.283 1.924

Neptune 4500.87 30.086 164.784 1.478 2.217

Pluto 5910.25 39.507 284.35 1.597 2.454

If you look at the last two columns, log d and log T, you will notice that Log T is
approximately 1.5 times log d. Actually, it is exact, but the values for d, T, log d, and log T are
approximate. Let’s look at this relationship a bit further.

log T = 1.5 log d
2 log T = 3 log d

Applying the exponent rule for logarithms: log T2 = log d3

Since the logarithm function is one-to-one: T2 = d3

You have just discovered Kepler’s Third Law of planetary motion. This gives us the
relationship between a planet’s distance from the Sun and the time it takes the planet to orbit the
Sun. While this relationship doesn’t require logarithms, you can see that using logs makes it easy to
discover the rule. Note that Kepler’s Third Law is still valid if we measure time and distance in
units other that Aus and Earth years, but we will need a constant.

Earthquakes

Earthquakes are measured on something called the Richter scale. [See the references for a
nomogram which illustrates the magnitude of earthquakes.] I live in Earthquake Country and most
people there know this scale isn’t linear. You could sleep through a magnitude 4 quake while an 8.0
would be devastating. The formula for computing the magnitude of an earthquake is

M = log10A(mm) + (Distance correction factor)



where A(mm) is the amplitude in millimeters that the arm of a seismograph moves. An example of
this formula applied to a location in Southern California is

M = log10A(mm) + 3 log10 [8Dt(s)] – 2.92

Here is some data from some recent US earthquakes.

Quake Magnitude Depth Deaths Damage
(miles) (Billion $)

Loma Prieta 6.9 10.5 63 6
CA 1989

Northridge 6.7 11 57 40
CA 1994

Nisqually (Seattle) 6.8 33 0 2
WA 2001

There doesn’t seem to be much relationship between the magnitude of the quake and either
the damage in dollars or the number of deaths. Here are the facts behind these numbers:  The
Northridge quake was in a heavily populated area and so had a large amount of damage, but it
occurred at 4:30 am so there were fewer casualties even though numerous structures collapsed. The
Loma Prieta quake happened about 5 pm on a weekday but was centered in an unpopulated area in
the Santa Cruz Mountains. If the epicenter had been closer to downtown San Francisco, the cost in
both dollars and human lives could have been devastating. The most significant fact about the
Nisqually quake was the depth. Seattle was very lucky.

I was in both the Loma Prieta and Nisqually quakes, about 35 miles from the epicenter of
each. The Loma Prieta quake felt FAR more threatening. I spent the Loma Prieta quake under a
table hearing the ceiling of the room I was in fall in chunks onto the tabletop. The Nisqually quake
felt like the type we in San Francisco barely notice.

In a 1999 article in the San Francisco Chronicle entitled “Time to Dump the Richter Scale”
 the author argued that the Richter scale is misleading because it makes a 6.9 (Loma Prieta 1989)
quake and a 7.6 (Taipei 1999) one seem to be of nearly equal magnitude when actually the second is
eight times more powerful than the first. The velocity of a 20 mph wind is twice the velocity of a 10
mph wind. Why can’t we have the same relationship with earthquakes?
Then, the new scale would mean that a Richter magnitude 1 would be a 1 on the new scale. A
Richter 2 would be a 30; a 3 would be a 900; 4 would be 27,000. The largest recorded earthquake, a
9.5 on the Richter scale, would be 3.6 trillion.

The author then points out that if other areas of science used scales similar to the Richter,
the age of the universe would no longer be 15,000,000,000 years but 10.17 Carl Sagans. And our
computer would not have 20 giga bytes of memory but 10.3 Bill Gates.

I hope you have learned something about logarithms. The next page contains some
references you may find interesting.
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